
Updated for iOS 17

By Chris Eidhof and Florian Kugler

1 Introduction　4

2 View Trees　7

View Builders 9
Render Trees 15
Identity 17

3 State and Binding　22

State 24
Observable Macro 31
ObservableObject Protocol 39
Bindings 47
View Updates and Performance 53
Which Property Wrapper for What Purpose? 54

4 Layout　56

Leaf Views 60
View Modifiers 65
Container Views 74
Alignment 82

5 Environment　91

Reading from the Environment 93
Custom Environment Keys 94
Custom Component Styles 98
Environment Objects 103

6 Animations　105

Controlling Animations 109
The Animatable Protocol 116
Transitions 120

7 Advanced Layout　131

The Layout Protocol 132
Preference-Based Layout 137
Variadic Views 144
Coordinate Spaces 145
Anchors 146
Matched Geometry Effect 148

1

Introduction

When SwiftUI came out, it was a radical departure from UIKit. We wrote the first
edition of this book to help you build a mental model of the way SwiftUI works. A few
years have passed since then, and we’ve had the opportunity to teach this material to
many teams of developers, large and small. During this process, we continued to
improve and refine our approach of explaining SwiftUI’s fundamentals based on the
feedback from the workshops. This new edition of Thinking in SwiftUI is the result of
that journey: we rewrote the entire book from the ground up to be on par with the
way we teach SwiftUI in our workshops.

While Apple’s SwiftUI API documentation has improved a lot over the years, we still
believe that there’s a need for more conceptual documentation explaining how
SwiftUI works. Just as with the first edition, this is still the focus of this book. We
hope to facilitate a solid conceptual understanding of SwiftUI so that you can learn
about the continuously expanding platform-specific APIs on your own.

We believe that a key aspect of working efficiently with SwiftUI is to understand how
the code we write translates into view trees. We cover this aspect in detail in the first
chapter, and then we move on to discuss how these view trees are interpreted in
terms of state, layout, animations, and more.

To this end, we included more visual explanations in this edition, partly thanks to a
completely revamped infrastructure for generating the book. We moved from a
LaTeX-based workflow to a pure Swift/TextKit-based tool, which allows us to embed
SwiftUI views directly into the book. In addition to simplifying our toolchain, this
allowed us to generate many diagrams, illustrations, and previews that hopefully
help explain the otherwise somewhat abstract concepts.

While we were wrapping up this edition of the book, WWDC23 took place, and Apple
announced a series of new and updated SwiftUI APIs. We added explanations
throughout the book for many of the new APIs, but we took care to explicitly mention
wherever we use an iOS 17-only API (which also means macOS 14 or any of the other
platforms released at the same time).

As we’ve observed many times in our workshops, the best way to learn SwiftUI is by
writing code yourself. This book cannot replace that, but it aims to be a helpful
companion. We encourage you to regularly put what you’ve learned from this book
into practice. Nothing will make your insights stick better than experimenting with
them and seeing for yourself how things work.

We’d like to thank everyone who helped us during the writing of this book. Thank you
Natalye for proofreading, Ole for the technical review, and Marcin for helping with
TextKit. We’d like to thank Robb, Ole, and Juul for helping us improve our
workshops, which in turn improved this book. We’d like to thank the previous readers
of our books and attendees of our workshops for all the feedback you gave us. And
lastly, a big thank you to the creators of SwiftUI.

Florian and Chris

2

View Trees

View trees and render trees are perhaps the most fundamental and important
concepts to understand to work with SwiftUI. To achieve the layout we want, we need
to understand how view trees are constructed. To understand how state works in
SwiftUI, it’s important to understand the lifetime of a view and how it’s related to the
view tree we’re building. Understanding the lifetime is equally important to writing
efficient SwiftUI code that only loads data and updates views when needed. Finally,
animations and transitions also require an understanding of view trees.

For example, consider the following view:

Text("Hello")
 .padding()
 .background(Color.blue)

Code

.background

.padding

Text

Color

View Tree

Hello

Preview

To the right of the code, we can see the corresponding view tree. The background
modifier is at the root of our view tree. Its primary subview — the view the
background is applied to — is the padded text, and it’s drawn on top. The secondary
subview is the blue color, and it’s drawn behind the primary subview. Each time we
apply a view modifier like padding or background to the text view, it gets wrapped in
another layer. Looking at a chain of view modifiers like in the example above, we
have to read from the bottom up to visualize the resulting view tree; the last view
modifier, background in this example, becomes the topmost view in the view tree.

Note that the background view modifier itself doesn’t draw anything. Even
though the background modifier is the topmost view in the view tree, the
actual background (the blue color) is still drawn behind the text.

Here’s a slightly different version of the example, with padding and background
swapped around:

Text("Hello")
 .background(Color.blue)
 .padding()

Code

.padding

.background

Text Color

View Tree

Hello

Preview

The background is now the immediate parent of the text, and the padding is the
parent of the background. In the Layout chapter, we’ll go into detail on why the
layout differs, but put simply, the layout changed because we constructed a different
view tree.

View Builders
SwiftUI uses a special syntax for constructing lists of views, called view builders. View
builders are built on top of Swift’s result builder feature, which was added to the
language specifically for this purpose. For example, here’s how we can construct a
view that displays an image next to a text:

HStack {
 Image(systemName: "hand.wave")
 Text("Hello")
}

Code

HStack

Image Text

View Tree

Hello

Preview

The HStack initializer takes a closure as a parameter, and that closure is marked as
@ViewBuilder. This allows us to write a number of expressions inside — each of
which represents a view. In essence, the closure passed to the stack builds a list of
views, which become subviews of the stack in this example.

Looking at the declaration of the ViewBuilder struct, we can see the method below for
handling a list of two views:

extension ViewBuilder {

 public static func buildBlock<C0, C1>(_ c0: C0, _ c1: C1) ->

 TupleView<(C0, C1)> where C0 : View, C1 : View

}

Since the stack in our example above has two view expressions inside, the view
builder’s buildBlock method with two parameters will be called. As we can see from
the return type, this constructs a TupleView wrapping our two views: the image and
the text. We can think of a view builder as a mechanism to construct a tuple view that
represent lists of views.

If we write just one view expression in the view builder closure, this won’t be
wrapped in a tuple view, but simply passed on as-is. However, for our mental
model, we can consider this exception to be a list of exactly one view.

SwiftUI uses view builders in many places. All container views like stacks and grids,
as well as modifiers like background and overlay, take a view builder closure to
construct their subviews. Furthermore, the body property of each view is implicitly
marked with @ViewBuilder, as is the body(content:) method of view modifiers. We can
also use the @ViewBuilder attribute to mark our own properties and methods as view
builders, as we’ll soon see in an example.

To better understand how lists of views are used by SwiftUI and how they can be
composed, let’s extend the example from above a bit:

HStack(spacing: 20) {
 Image(systemName: "hand.wave")
 Text("Hello")
 Spacer()
 Text("And Goodbye!")
 Image(systemName: "hand.wave")
}

Code

HStack

Image Text Spacer Text Image

View Tree

Now the stack has five subviews, which are represented as a tuple view with five
elements. For better readability, we might want to break up stacks that grow large —
which actually happens quite frequently in practice — into separate components.
Here’s one way we could do that:

struct Greeting: View {

 @ViewBuilder var hello: some View {

 Image(systemName: "hand.wave")

 Text("Hello")

 }

 @ViewBuilder var bye: some View {

 Text("And Goodbye!")

 Image(systemName: "hand.wave")

 }

 var body: some View {

 HStack(spacing: 20) {

 hello

 Spacer()

 bye

 }

 }

}

By marking a property with @ViewBuilder, we’re using view builder syntax in the
property’s body, just like we would in body or within the closure of a stack.

Looking at the type of the HStack’s view builder closure, we now have a TupleView
with three elements — a tuple view, the spacer, and another tuple view:

TupleView<(

 TupleView<(Image, Text)>,

 Spacer,

 TupleView<(Text, Image)>

)>

However, to the HStack, this is exactly the same as before, when we wrote all five
views directly in the stack’s view builder closure. The stack still has five subviews, as
we can see by the stack’s spacing being applied between each of them.

HStack

TupleView

TupleView

Image Text

Spacer TupleView

Text Image

View Tree

Hello And Goodbye!

Preview

With the exception of in the diagram above, we omitted the TupleViews in the
view tree diagrams to make them more readable. We can read the lines
between a parent view and its subview(s) as a tuple view.

This is a special property of view lists: when a container view like the HStack iterates
over the view list, nested lists are recursively unfolded so that a tree of tuple views
turns into a flat list of views. This even applies if we were to refactor the hello and bye
view builder properties into separate views:

struct Hello: View {

 var body: some View {

 Image(systemName: "hand.wave")

 Text("Hello")

 }

}

struct Bye: View {

 var body: some View {

 Text("And Goodbye!")

 Image(systemName: "hand.wave")

 }

}

struct Greeting: View {

 var body: some View {

 HStack(spacing: 20) {

 Hello()

 Spacer()

 Bye()

 }

 }

}

Since the body of the Hello and Bye views are themselves view lists with two
elements, they get unfolded when the stack iterates over its subviews like it did
before.

We can also apply view modifiers to view lists, but the behavior might be somewhat
surprising. For example, we could apply a border to the Hello view:

HStack(spacing: 20) {
 Hello()
 .border(.blue)
 Spacer()
 Bye()
}

Code

Hello And Goodbye!

Preview

This will apply the border to each element of the view list, so both the image and the
text have separate borders drawn around them. One common scenario where we
might encounter this behavior is with using Group, which is a layout-agnostic
abstraction around a view builder:

struct Greeting: View {
var body: some View {

 HStack {
 Group {
 Image(systemName: "hand.wave")
 Text("Hello")
 }
 .border(.blue)
 }
 }
}

Code

Hello

Preview

Since the result of the group is a tuple view with two elements, the border will be
applied to each of the two views. We can use this technique to our advantage if we
want to apply the same modifiers to each view. However, we found that this can get
confusing quickly if it’s overused, because the behavior of the modifiers is so
different from what we’d normally expect in all other contexts.

There’s an exception to this and we’re not sure whether this is intentional behavior:
when placing the group, including the modifiers, as the root view or as the only
subview within a scroll view, the group behaves like a VStack, and the modifiers
aren’t applied to each individual view within the group. When placing a group within
an overlay or background, it behaves like an implicit ZStack, presenting another
exception to the rule.

Dynamic Content

View lists constructed with view builders can be dynamic, too. Here’s how we can
conditionally include a view:

HStack {
 Image(systemName: "hand.wave")

if showText {
 Text("Hello")
 }
}

Code

HStack

Image Text?

View Tree

Looking at the diagram, we can see that the HStack still has two subviews: an image,
and an optional text. From this view tree, SwiftUI knows that the stack will always
have an image as the first subview, and perhaps a text as the second subview.

Instead of an if statement, we can also use other statements — such as if let, switch, or
if/else — to create conditional views:

HStack {
 Image(systemName: "hand.wave")

if let g = greeting {
 Text(g)
 }
}

Code

HStack

Image Text?

View Tree

The view tree diagrams in this chapter (and the book in general) have been generated
automatically from the type of the views. The opaque return type some View, which is
used in most places in SwiftUI, hides complex nested view types, which encode the
exact structure of the view tree. The type of a view also specifies exactly which parts
are static and which are dynamic, giving SwiftUI full knowledge of which views can
be dynamically inserted or removed.

Render Trees
SwiftUI uses the view tree to construct a persistent render tree. View trees themselves
are ephemeral: we like to think of view trees as blueprints, since they get constructed
and then thrown away over and over again. Nodes in the persistent render tree, on
the other hand, have a longer lifetime: they stay around across view rerenders and are
then updated to reflect the current state.

To distinguish between the two, we’ll talk about views when talking about elements
in the view tree, and nodes when talking about elements in the render tree. In this
way, we can talk about the process of converting views into nodes as “rendering.”
Note that we never deal with the render tree directly, as it’s internal to SwiftUI.

The render tree doesn’t actually exist, but it’s a useful model to understand
how SwiftUI works. In reality, SwiftUI has something called the attribute
graph, which includes more than just the rendered views; it also contains the
state and tracks dependencies. Apple calls the nodes in the render tree
attributes.

When we first display a SwiftUI view, the render tree that’s constructed is mostly a
one-to-one representation of the view tree. Consider the example from before:

HStack {
 Image(systemName: "hand.wave")

if let g = greeting {
 Text(g)
 }
}

Code

HStack

Image Text?

View Tree

When the greeting value is nil, the render tree for the view above only has one
subview, the image node, inside the HStack.

HStack

Image Text?

nil

View Tree

HStack

Image

Render Tree

When greeting changes to a non-nil value, the view gets reconstructed, and the
render tree is then updated based on the new view tree: SwiftUI knows there will
always be an HStack, so it doesn’t need to touch this part of the render tree. It also
knows there will always be an image as the first subview. Both of these views are
completely static.

HStack

Image Text?

Hello

View Tree

HStack

Image Text

Render Tree

Once the view update mechanism inspects the conditional view, it knows that the
condition might have changed. When the condition changes from nil to a non-nil
value, SwiftUI inserts a Text node into the render tree. Likewise, when the condition
changes from non-nil to nil, SwiftUI removes the Text node from the render tree.
When a node is removed from the render tree, any associated state disappears as well.
We’ll talk more about this in the State chapter.

There’s one more scenario in this example for updating the render tree: we have a
non-nil greeting value before and after the update, so the render tree will have the
same text node before and after the update as well. However, if the value of greeting
has changed, then the string of the text node will be updated.

Lifetime

As we mentioned above, the view tree itself is ephemeral — the concept of a lifetime
doesn’t make sense here. However, nodes in the render tree have a specific lifetime:
from when they’re first rendered, to when they’re no longer needed for display.

However, the lifetime of nodes in the render tree isn’t the same as their visibility
onscreen. If we render a large VStack in a scroll view, the render tree will contain
nodes for all subviews of the VStack, no matter if they’re currently onscreen or not.

VStack renders its contents eagerly, as opposed to its LazyVStack counterpart. But
even with a lazy stack, nodes in the render tree will be preserved when they go
offscreen to maintain their state (we’ll go into more detail about this in the State
chapter. The bottom line is that nodes in the render tree have a lifetime, but it’s not
under our control.

For practical purposes, SwiftUI provides three hooks into lifetime events:

1. onAppear is executed each time a view appears onscreen. This can be called
multiple times for one view even though the backing node in the render tree
never went away. For example, if a view in a LazyVStack or List is scrolled
offscreen and back onscreen repeatedly, onAppear will be called each time.
The same is true when we switch tabs in a TabView: each time we switch to a
tab, and not just the first time the tab is displayed, its onAppear will be called.

2. onDisappear is executed when a view disappears from the screen. This is the
counterpart to onAppear and works using the same rules (it can be called
multiple times even when the backing node doesn’t go away).

3. task is a combination of the two used for asynchronous work. This modifier
creates a new task at the point where onAppear would be called, and it cancels
this task when onDisappear would be invoked.

Identity
Since view trees in SwiftUI don’t consist of reference types (objects) that have
intrinsic identity, SwiftUI assigns identity to views using their position in the view
tree. This kind of identity is called implicit identity. To illustrate this, let’s take a look
at a slightly modified version of the example above:

HStack {
 Image(systemName: "hand.wave")

if let g = greeting {
 Text(g)
 } else {
 Text("Hello")
 }
}

Code

HStack

Image ConditionalContent

Text Text

View Tree

Instead of just an optional text, the view tree now contains a ConditionalContent view
with two subviews: a text for the non-nil case, and another text for the nil case. Each
of the views in the view tree is uniquely identifiable by its position in the tree. As an

illustration of this concept, think about constructing a “path” string to identify each
view:

HStack {
 Image(systemName: "hand.wave") // 0

if let g = greeting {
 Text(g) // 1.ifBranch
 } else {
 Text("Hello") // 1.elseBranch
 }
}

Code

0 1

ifBranch elseBranch

HStack

Image ConditionalContent

Text Text

View Tree

Image is "0", because it’s the first subview of the HStack. The Text in the non-nil
branch of the if let statement is "1.ifBranch", because the ConditionalContent is the
second subview of the HStack, and the Text is the first subview of the
ConditionalContent.

We’re not suggesting that these path strings are how SwiftUI implements
implicit identity under the hood; rather, they’re just a human-friendly model
to demonstrate what’s meant by implicit identity.

Now consider the two text views in the two branches of the if let statement. They
have different identities, and therefore are considered two distinct views by SwiftUI.
When the condition changes, the old text will be removed from the render tree, and a
new text will be inserted. This has all kinds of consequences in terms of state,
animations, and transitions, which we’ll discuss later on.

Let’s take a look at the same example, but written a bit differently:

HStack {
 Image(systemName: "hand.wave")
 Text(greeting ?? "Hello")
}

Code

HStack

Image Text

View Tree

We can immediately see that the view tree now is simpler: the HStack has two static
subviews, the image and the text. Now the difference between a nil and a non-nil

greeting value is just the string that’s displayed by the text view. The text view itself,
as described by its implicit identity (second subview of the HStack), will always be
around and unaffected by any changes to the value of greeting.

Along with implicit identity, views can also have an explicit identity. This is mostly
used for views in a ForEach, where each item in the ForEach is assigned an explicit
identifier — for example, a unique identifier of the underlying data (either by
conforming the items to the Identi!able protocol, or by providing a key path to a
unique identifier). However, we can also assign explicit identifiers manually using
the id modifier.

The id parameter can be any Hashable value. In the example below, we’re using a
Boolean by comparing the greeting value to nil. If it’s nil, the explicit identifier is true.
Otherwise, it’s false. This means that SwiftUI considers the text view to be a different
view when the identifier changes. Again, this will remove the previous text node from
the render tree and insert a new one.

HStack {
 Image(systemName: "hand.wave")
 Text(greeting ?? "Hello")
 .id(greeting == nil)
}

Code

0 1

true

HStack

Image id

Text

View Tree

It’s important to note that an explicit identifier like the one above doesn’t override
the view’s implicit identity, but is instead applied on top of it. In other words, SwiftUI
won’t be confused by using the same explicit identifiers on multiple views. As we
saw, the path of the view is one way to give the implicit identity a concrete form, and
we can think of explicit identifiers as “appending to the path.”

With a more solid understanding of view identity in SwiftUI at hand, let’s take a look
at two common issues related to this topic.

First, let’s consider the following example:

HStack {
let v = Text("Hello")

 v
 v
}

Code

HStack

Text Text

View Tree

Here, we’re constructing a text view in a local variable and then using it twice in the
HStack. What does this mean in terms of the identity of the two text views?

Clearly, the text views are located at different positions in the view tree, as the tree
shows. Therefore, they have different implicit identity and are considered separate
views by SwiftUI. We can also think of this in terms of the “blueprint” idea: we’re
creating a blueprint for a text view with the string "Hello", and then we’re using this
blueprint twice.

Here’s another example related to view identity — it’s a popular pattern for writing a
little view extension that conditionally applies a view modifier:

// Anti-pattern

extension View {

 @ViewBuilder

 func applyIf<V: View>(_ condition: Bool, transform: (Self) -> V) -> some View {

 if condition {

 transform(self)

 } else {

 self

 }

 }

}

The applyIf method can be used like this:

HStack {
 Image(systemName: "hand.wave")
 Text("Hello")
 .applyIf(highlighted) {
 $0.background(.yellow)
 }
}

Code

HStack

Image ConditionalContent

.background

Text Color

Text

View Tree

Looking at the resulting view tree, we can see that using the applyIf modifier has
introduced a ConditionalContent with two subviews: an unmodified text, and a text
with a background. This means that when the condition (highlighted) changes, the
identity of the text onscreen will have changed as well.

We strongly recommend not using this pattern, since the seemingly innocuous
applyIf modifier introduces a branch in the view tree that might have unforeseen
consequences downstream. Instead, the following is much safer:

HStack {
 Image(systemName: "hand.wave")
 Text("Hello")
 .background(highlighted ? .red : .clear)
}

Code

HStack

Image .background

Text Color

View Tree

Most view modifiers take optionals so that we can use either the ternary operator
pattern to specify a value, or nil if we don’t want to specify a value. For example, the
width and height of frame are optional, the color of foregroundColor is optional, and
the length of padding is optional or can be set to zero. For the same reason, view
modifiers like bold or disabled take a Boolean argument, although one might naively
think that the argument isn’t necessary.

3

State and Binding

In the previous chapter, we saw how view trees are constructed as blueprints and how
they’re translated into the persistent render tree. In order to build dynamic
applications, we construct different view trees based on the current state and rely on
SwiftUI to update the render tree accordingly. This is one of SwiftUI’s greatest
advantages: it observes state automatically and always keeps our views in sync with
the model.

In general, the view update cycle can be summarized like this:

1. The view tree is constructed.

2. Nodes in the render tree are created, removed, or updated to match the
current view tree.

3. Some event causes a state change.

4. This process repeats.

In principle, we don’t have to worry about when the view tree needs to be recreated,
which parts are affected by a state change, or what has to be updated onscreen to
match the current view state, because SwiftUI takes responsibility for all of that.
Instead, our job is to describe what should be onscreen given a specific state.

As a disclaimer, we should add that there are times when we need to think
about which parts of our view tree are being rerendered and for what reason. If
we run into performance problems, it’s very likely that overly broad view
updates play a role. We’ll discuss this more at the end of this chapter.

SwiftUI comes with several different wrapper types for state, depending on whether
the state is a value or an object, and whether it’s private to the view or should be
passed in from the outside. However, we usually don’t have to deal with these
wrapper types directly, since SwiftUI exposes all of them via property wrappers like
@State, @StateObject, and @ObservedObject.

As of iOS 17, the way SwiftUI interfaces with objects has changed completely. SwiftUI
no longer relies on the Combine framework for observation, and instead uses a
macro-based solution, which also renders the @StateObject and @ObservedObject
property wrappers superfluous. The @State property wrapper is now used for values
and objects, whereas we usually only used it for values pre-iOS 17.

Since @State is relevant across all versions of SwiftUI, we’ll start with an in-depth
look at this property wrapper, and then we’ll distinguish between the pre- and post-
iOS 17 world with regard to observing objects.

State
The @State property wrapper is the easiest way to introduce state to a SwiftUI
application. It’s meant to be used for private view state values. For example, here’s a
simple counter view:

struct Counter: View {

 @State private var value = 0

 var body: some View {

 Button("Increment: \(value)") {

 value += 1

 }

 }

}

When the counter is rendered the first time around, the state property will have its
initial value of 0. During the execution of the body property, SwiftUI notices that the
state property is accessed, and it adds a dependency between the value state property
and the counter view’s node in the render tree. As a result, whenever value changes
(e.g. because the button is tapped), SwiftUI will reexecute the counter view’s body.

Note that if we don’t include the value inside the button’s label, SwiftUI is
smart enough to figure out that it doesn’t need to rerender the counter’s body
when the state property changes.

We might wonder how the value property can ever change, since we’re assigning 0 to
it each time the counter view gets initialized. To shed some light on this behavior and
to take some of the magic away, here’s how we could write the same code without
using the @State property wrapper:

struct Counter: View {

 private var _value = State(initialValue: 0)

 private var value: Int {

 get { _value.wrappedValue }

 nonmutating set { _value.wrappedValue = newValue }

 }

 var body: some View {

 Button("Increment: \(value)") {

 value += 1

 }

 }

}

Instead of relying on @State, we’re now creating a State value ourselves and
assigning it to the _value property. The State(initialValue:) initializer makes it clear
that the value 0 is just the initial value of the state property. This is the value that will
be used when the node for the counter view is first created in the render tree. Once
the node is there, the initial value of the state property will be ignored, and SwiftUI
takes care of keeping the current value around across rerenders.

In addition to the _value property, we also added a computed value property, which
makes the state easier to use: instead of having to write _value.wrappedValue each
time we want to read or write, we can use value, and the computed property will
forward that to _value.wrappedValue transparently. When we use the wrappedValue
of a state property in the view’s body, what we’re really dealing with is a reference to
the persistent state value in the render tree.

The @State property wrapper does all this for us: it creates the underscored version
of the property (storing the actual State value), as well as the computed property that
forwards the getter and setter to the wrappedValue.

Let’s go through two scenarios: the initial rendering of the view above, and the
second render when the button gets tapped. Here’s what happens when the counter
view first appears onscreen:

To make the state diagrams throughout this chapter more readable, we have
highlighted the changes compared to the diagram in the previous step using
this color.

Step 1. When the Counter struct is constructed for the first time, no corresponding
node in the render tree exists yet. In the diagram below, the view struct is on the left.
The upper part of the view struct symbolizes the state property, which, in turn, has
two internal values: the initialValue, which is the value we assigned during
initialization of the property, and wrappedValue, which is the value we’re interacting
with in the view’s body. We can think of wrappedValue as a pointer to the actual value
of this state property, which currently doesn’t point to anything yet. The lower part of
the view struct symbolizes the view’s body, which hasn’t yet been executed and
therefore is still empty.

Thanks for checking out the preview of Thinking in SwiftUI!

We hope you’ve enjoyed the content so far. If you’d like to read on and learn more about
how SwiftUI works, please consider buying a copy of this eBook here:

https://www.objc.io/books/thinking-in-swiftui

You’ll learn more about how SwiftUI’s state system works, how you can use the environ-
ment and preferences to your advantage, all about the layout system, animations, and
much more.

https://www.objc.io/books/thinking-in-swiftui
https://www.objc.io/books/thinking-in-swiftui

	Child
	Introduction
	View Trees
	View Builders
	Dynamic Content

	Render Trees
	Lifetime

	Identity

	State and Binding
	State
	Observable Macro
	State and Observable
	How the Observable Macro Works

	ObservableObject Protocol
	StateObject
	Observed Object

	Bindings
	Observable and Bindable

	View Updates and Performance
	Which Property Wrapper for What Purpose?

	Layout
	Leaf Views
	Text
	Shapes
	Colors
	Image
	Divider
	Spacer

	View Modifiers
	Padding
	Fixed Frames
	Flexible Frames
	Aspect Ratio
	Overlay and Background
	Fixed Size

	Container Views
	HStack and VStack
	ZStack
	Scroll View
	GeometryReader
	List
	LazyHStack and LazyVStack
	LazyVGrid and LazyHGrid
	Grid
	ViewThatFits
	Rendering Modifiers

	Alignment
	Modifying Alignment Guides
	Custom Alignment Identifiers

	Environment
	Reading from the Environment
	Custom Environment Keys
	Custom Component Styles
	Environment Objects

	Animations
	Property Animations vs. Transitions
	Controlling Animations
	Timing Curves
	Transactions
	Completion Handlers

	The Animatable Protocol
	Transitions
	Phase-Based Animations
	Keyframe-Based Animations
	Multiple Tracks

	Advanced Layout
	The Layout Protocol
	Limitations

	Preference-Based Layout
	Geometry Readers
	Preferences
	Putting it all together

	Variadic Views
	Coordinate Spaces
	Anchors
	Matched Geometry Effect
	Matched Geometry Effect and Transitions

